If it's not what You are looking for type in the equation solver your own equation and let us solve it.
14x^2-14=0
a = 14; b = 0; c = -14;
Δ = b2-4ac
Δ = 02-4·14·(-14)
Δ = 784
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{784}=28$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-28}{2*14}=\frac{-28}{28} =-1 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+28}{2*14}=\frac{28}{28} =1 $
| -10(n+2)-3(1+n)=-62 | | 12=y-20 | | x^=-2,96+0,6 | | 5d+19=-71 | | x2+18x+17=0 | | q3– 7= -3 | | 3(3=x)=18 | | -2(q-8)=-14 | | v2+ 4= 6 | | 4(2n+2)=9(6n+6)+3 | | m+4/5=6 | | (3-2x)/4=2-1/2x | | s+2/1/2s+20=62 | | m/3+13=17 | | 2x^2+3.5x-7.5=0 | | 0=x^2-70x-600 | | 2x+5(x-6)=40 | | -17+n/3=33 | | l-8=2l+10 | | 9-3x=10x+35 | | 4(3n+5)=6(8n+9)+7 | | c=1/2+(c1-c2) | | 3x+2(2x+4)=78 | | 4xX15=144 | | 7x^2-6=12x | | 6x+3(6x-5)=129 | | -5x+(-2)=-2+4 | | 0.65x+0.05(4-x)=0.10(38) | | 4(2x+9)=-33+37 | | -2(-x+2)=8 | | 6/7x-9/7=4 | | 13x-22=18x+20 |